

A Sparsity-Aware Analog-Digital Hybrid eDRAM CIM by Effective Row Activation

Seungbin Kim¹, Hoichang Jeong¹, and Kyuho Lee² ¹Department of Electrical Engineering, UNIST, Republic of Korea ²Department of Electrical and Electronic Engineering, Yonsei University, Republic of Korea

Design Challenges of Previous CIMs

< Waste of Energy Consumption by Zero Computation>

Input Activations (IA) and Weights in DNN exhibit *Tremendous Sparsity* with random pattern.

Effective Row Activation w/ Hybrid mode

< Input Activation Grouping Convolution>

- **Direct Mapping** of convolution into the CIM Macro and *Entire Row Activation* for MAC operations disables the handling of random sparsity.
- A significant portion of energy is wasted in CIM macro for calculating 83% of zero computation.

< Distinct Trade-off of Analog CIM and Digital CIM >

- **A-CIMs** ensure high throughput by activating entire rows simultaneously.
- **A-CIMs** require high-resolution ADCs to maintain computational accuracy, leading to enormous power usage. 8

D-CIMs consume less power without utilizing ADC. 🙂

D-CIMs suffer from low throughput due to sequential row-by-row operations. 8

- It *Eliminates Zero Computations* by never activating rows that correspond to the W₀ group, *Retaining Algebraic Equivalence* to conventional convolution.
- IGC improves *Non-zero Computation Ratio* in CIM macro by *1.93× and 4.59×* on VGGNet-16 and ResNet-18.

< Analog-Digital Hybrid MAC Macro>

Overall Architecture

- **Depending on the number of effective row** (σ) for Wi group, HMM decided to operate mode of readout or IMA mode to maximize the energy efficiency.
- The proposed processor achieves benchmark energy efficiency of 24.8 TOPS/W for ResNet-18 and 30.7 TOPS/W for VGGNet-16.

Chip Photograph & Performance Summary

				3.6 mm	Ì		•	Technology	y
4	7		Area						
								Operating Volt	tag
	H						E	Frequency	/
		IGC	IGC	natrix ssing e#0	IGC	IGC		Bit Precision	
		Lore	Core	n-n Sore	Uore	Lore	H	Cell Structu	re
		# 0		No 20	TZ	# 5		CIM Capacit	ty
Ξ	E						E	Peak Macro &	Sy
Ξ	B,	SPS Route	er & L-NoC	G-NoC	SPS Route	er & L-NoC		Macro Energy	y- ղ
<u> </u>	E			Digig				System Energ	J y- î
רי	B			× つ			H	Bench	ma
	Barriel Barriel	and the second se					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Technology		28 nm CMOS						
Area		12.96 mm ²						
Operating Volta	age	1.0 V						
Frequency		250 MHz						
Rit Procision	IA	8-bit						
BIL FIECISION	W	2-bit ~ 8-bit						
Cell Structure	e	4T2C eDRAM						
CIM Capacity	/	305 KB						
Peak Macro & System Energy Efficiency								
Macro Energy	-η	47.5 TOPS/W						
System Energy	/- η	25.7 TOPS/W						
Benchmark Performance								

	Y		
Resistor D	AC &	ADC	ADC
SAR/Encode	er Logic	Logic	Logic
_{8(Readout)	4 (ADC)	<u></u>	<u></u> {12
RM-NM	ЛL	NML	NML

- *Hierarchical network-on-chips* consists of global (*G-NoC*) and local (*L-NoC*). **G-NoC**: Multicasting data from global buffers to 8 IGC cores w/ H-Star architecture **L-NoC:** Facilitating partialsum accumulation from 4 IGC cores w/ Ring architecture
- *Hybrid MAC macro* is consists of 305×256 eDRAM bitcell array. **288 rows for** storing IAs and perform either in-memory accumulation (IMA) in analog domain or readout in digital domain **15 rows for maintaining computation linearity during IMA 2** rows for sample and hold (S/H) the IMA result and connected to ADC

• 본 연구는 IDEC에서 MPW를 지원받아 수행하였습니다. • 본 연구는 IDEC에서 EDA Tool를 지원받아 수행하였습니다.

